Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Primary cardiomyopathies in childhood: clinical and diagnostic features (literature review)

https://doi.org/10.29001/2073-8552-2022-37-3-65-74

Abstract

Primary cardiomyopathies in childhood are a rare but serious disease that is a common cause of heart failure and the most common reason for heart transplantation in children over one year of age. Over the past decades, the diagnosis of cardiomyopathy has advanced from traditional clinical imaging methods to new genetic and imaging techniques. The article presents a review of the literature data on the modern classification of primary pediatric cardiomyopathies and the features of the clinical course and imaging, which is an integral part of the diagnosis based on the primary morphofunctional phenotype.

About the Authors

I. V. Plotnikova
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Irina V. Plotnikova, Dr. Sci. (Med.), Head of the Department of Pediatric Cardiology

111a, Kievskaya str., Tomsk, 634012



L. I. Svintsova
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Liliya I. Svintsova, Dr. Sci. (Med.), Leading Research Scientist, Department of Pediatric Cardiology

111a, Kievskaya str., Tomsk, 634012



O. Yu. Dzhaffarova
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Olga Yu. Dzhaffarova, Cand. Sci. (Med.), Senior Research Scientist, Department of Pediatric Cardiology

111a, Kievskaya str., Tomsk, 634012



E. O. Kartofeleva
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Elena O. Kartofeleva, Junior Research Scientist, Department of Pediatric Cardiology

111a, Kievskaya str., Tomsk, 634012



Yu. E. Perevoznikova
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Yulyana E. Perevoznikova, Junior Research Scientist, Department of Pediatric Cardiology

111a, Kievskaya str., Tomsk, 634012



E. N. Pavlyukova
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Elena N. Pavlyukova, Head of the Department of Atherosclerosis and Coronary Artery Disease

111a, Kievskaya str., Tomsk, 634012



References

1. Sisakian H. Cardiomyopathies: Evolution of pathogenesis concepts and potential for new therapies. World J. Cardiol. 2014;6(6):478–494. DOI: 10.4330/wjc.v6.i6.478.

2. Lipshultz S.E., Law Y.M., Asante-Korang A., Austin E.D., Dipchand A.I., Everitt M.D. et al. Cardiomyopathy in children: Classifi cation and diagnosis: A scientifi c statement from the American Heart Association. Circulation. 2019;140(1):e9–e68. DOI: 10.1161/cir.0000000000000682.

3. Lee T.M., Hsu D.T., Kantor P., Towbin J.A., Ware S.M. ,Colan S.D. et al. Pediatric cardiomyopathies. Circ. Res. 2017;121(7):855–873. DOI: 10.1161/circresaha.116.309386.

4. Yuan S.-M. Cardiomyopathy in the pediatric patients. Pediatr. Neonatol. 2018;59(2):120–128. DOI: 10.1016/j.pedneo.2017.05.003.

5. Nandi D., Hayes E.A., Wang Y., Jerrell J.M. Epidemiology of pediatric hypertrophic cardiomyopathy in a 10-year medicaid cohort. Pediatr. Cardiol. 2021;42(1):210–214. DOI: 10.1007/s00246-020-02472-2.

6. Richardson P., McKenna W., Bristow M., Maisch B., Mautner B., O’Connell J. et al. Report of the 1995 World Health Organization / International ociety and Federation of Cardiology Task Force on the defi nition and classifi cation of cardiomyopathies. Circulation. 1996;93(5):841–842. DOI: 10.1161/01.cir.93.5.841.

7. Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P. et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014;35(39):2733–2779. DOI: 10.1093/eurheartj/ehu284.

8. Gersh B.J., Maron B.J., Bonow R.O., Dearani J.A., Fifer M.A., Link M.S. et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation / American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124(24):2761–2796. DOI: 10.1161/cir.0b013e318223e230.

9. Jeff eries J.L., Wilkinson J.D., Sleeper L.A., Colan S.D., Lu M., Pahl E. et al. Pediatric cardiomyopathy registry investigators. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: Results from the pediatric cardiomyopathy registry. J. Card. Fail. 2015;21(11):877–884. DOI: 10.1016/j.cardfail.2015.06.381.

10. Rusconi P., Wilkinson J.D., Sleeper L.A., Lu M., Cox G.F., Towbin J.A. et al. Pediatric cardiomyopathy registry investigators. Diff erences in presentation and outcomes between children with familial dilated cardiomyopathy and children with idiopathic dilated cardiomyopathy: A report from the Pediatric Cardiomyopathy Registry Study Group. Circ. Heart Fail. 2017;10(2):e002637. DOI: 10.1161/circheartfailure.115.002637.

11. Łuczak-Woźniak K., Werner B. Left ventricular noncompaction-a systematic review of risk factors in the pediatric population. J. Clin. Med. 2021;10(6):1232. DOI: 10.3390/jcm10061232.

12. Ditaranto R., Caponetti A.G., Ferrara V., Parisi V., Minnucci M., Chiti C. et al. Pediatric restrictive cardiomyopathies. Front. Pediatr. 2022;9:745365. DOI: 10.3389/fped.2021.745365.

13. Kim K.H., Pereira N.L. Genetics of cardiomyopathy: Сlinical and mechanistic implications for heart failure. Korean Circ. J. 2021;51(10):797–836. DOI: 10.4070/kcj.2021.0154.

14. Ware S.M., Wilkinson J.D., Tariq M., Schubert J.A., Sridhar A., Colan S.D. et al. Genetic сauses of сardiomyopathy in сhildren: First results from the Pediatric Cardiomyopathy Genes Study. J. Am. Heart Assoc. 2021;10:e017731. DOI: 10.1161/jaha.120.017731.

15. Watkins H., Ashrafi an H., Redwood C. Inherited cardiomyopathies. N. Engl. J. Med. 2011;364(17):1643–1656. DOI: 10.1056/nejmra0902923.

16. Ouellette A.C., Mathew J., Manickaraj A.K., Manase G., Zahavich L., Wilson J. et al. Clinical genetic testing in pediatric cardiomyopathy: Is bigger better? Clin. Genet. 2018;93(1):33–40. DOI: 10.1111/cge.13024.

17. Rath A., Weintraub R. Overview of cardiomyopathies in childhood. Front. Pediatr. 2021;9:708732. DOI: 10.3389/fped.2021.708732.

18. Леонтьева И.В. Проблемы современной диагностики и лечения дилатационной кардиомиопатии у детей. Российский вестник перинатологии и педиатрии. 2018;63(2):7–15. DOI: 10.21508/1027-4065-2018-63-2-7-15. Leontyeva I.V. Problems of modern diagnostics and treatment of dilated cardiomyopathy in children. Russian Bulletin of Perinatology and Pediatrics. 2018;63(2):7–15. (In Russ.) DOI: 10.21508/1027-4065-2018-63-2-7-15.

19. Price J.F., Jeewa A., Denfi eld S.W. Clinical characteristics and treatment of cardiomyopathies in children. Curr. Cardiol. Rev. 2016;12(2):85–98. DOI: 10.2174/1573403x12666160301115543.

20. Chronic heart failure: Federal clinical guidelines. The Union of Pediatricians of Russia, Russian Pediatric Cardiology Association. Moscow: Pediatr; 2015:40. (In Russ.).

21. Leontyeva I.V., Makarova V.A. Hypertrophic cardiomyopathy in children. Ros. Vestn. Perinatol. Pediat. 2013;5:23–34. (In Russ.).

22. Olivotto I., Cecchi F., Poggesi C., Yacoub M.H. Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ. Heart Fail. 2012;5(4):535–546. DOI: 10.1161/circheartfailure.112.967026.

23. Wolf C.M. Hypertrophic cardiomyopathy: Genetics and clinical perspectives. Cardiovasc. Diagn. Ther. 2019;9(2):388–415. DOI: 10.21037/cdt.2019.02.01.

24. Zuñiga Cisneros J., Stehlik J., Selzman C.H., Drakos S.G., McKellar S.H., Wever-Pinzon O. Outcomes in patients with hypertrophic cardiomyopathy awaiting heart transplantation. Circ. Heart Fail. 2018;11(3):e004378. DOI: 10.1161/circheartfailure.117.004378.

25. Ciarambino T., Menna G., Sansone G., Giordano M. Cardiomyopathies: An overview. Int. J. Mol. Sci. 2021;22(14):7722. DOI: 10.3390/ijms22147722.

26. Leontyeva I.V., Kovalev I.A. Prognosis for hypertrophic cardiomyopathy in children. Pediatrics named after G.N. Speransky. 2020;99(3):235–244. (In Russ.). DOI: 10.24110/0031-403x-2020-99-3-235-244.

27. Norrish G., Cantarutti N., Pissaridou E., Ridout D.A., Limongelli G., Elliott P.M. et al. Risk factors for sudden cardiac death in childhood hypertrophic cardiomyopathy: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2017;24(11):1220–1230. DOI: 10.1177/2047487317702519.

28. Tsoutsman T., Lam L., Semsarian C. Genes, calcium and modifying factors in hypertrophic cardiomyopathy. Clin. Exp. Pharmacol. Physiol. 2006;33(1–2):139–145. DOI: 10.1111/j.1440-1681.2006.04340.x.

29. Norrish G., Field E., Mcleod K., Ilina M., Stuart G., Bhole V. et al. Clinical presentation and survival of childhood hypertrophic cardiomyopathy: A retrospective study in United Kingdom. Eur. Heart J. 2019;40(12):986–993. DOI: 10.1093/eurheartj/ehy798.

30. Marston N.A., Han L., Olivotto I., Day S.M., Ashley E.A., Michels M. et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur. Heart J. 2021;42(20):1988–1996. DOI: 10.1093/eurheartj/ehab148.

31. Gowda S.N., Ali H.J., Hussain I. Overview of restrictive cardiomyopathies. Methodist Debakey Cardiovasc. J. 2022;18(2):4–16. DOI: 10.14797/mdcvj.1078.

32. Rohde S., Muslem R., Kaya E., Dalinghaus M., van Waning J.I., Majoor-Krakauer D. State-of-the art review: Noncompaction cardiomyopathy in pediatric patients. Heart Fail. Rev. 2022;27(1):15–28. DOI: 10.1007/s10741-021-10089-7.

33. Tian T., Yang Y., Zhou L., Luo F., Li Y., Fan P. et al. Left ventricular non-compaction: a cardiomyopathy with acceptable prognosis in children. Heart Lung Circ. 2018;27(1):28–32. DOI: 10.1016/j.hlc.2017.01.013.

34. Shi W.Y., Moreno-Betancur M., Nugent A.W., Cheung M., Colan S., Turner C. et al. National Australian childhood cardiomyopathy study. Long-term outcomes of childhood left ventricular noncompaction cardiomyopathy: Results from a national population-based study. Circulation. 2018;138(4):367–376. DOI: 10.1161/circulationaha.117.032262.

35. Van Waning J.I., Caliskan K., Hoedemaekers Y.M., van Spaendonck- Zwarts K.Y., Baas A.F., Boekholdt S.M. et al. Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J. Am. Coll. Cardiol. 2018;71(7):711–722. DOI: 10.1016/j.jacc.2017.12.019.

36. Brescia S.T., Rossano J.W., Pignatelli R., Jefferies J.L., Price J.F., Decker J.A. et al. Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation. 2013;127(22):2202–2208. DOI: 10.1161/circulationaha.113.002511.

37. Casas G., Rodríguez-Palomares J.F. Multimodality cardiac imaging in cardiomyopathies: from diagnosis to prognosis. J. Clin. Med. 2022;11(3):578. DOI: 10.3390/jcm11030578.

38. Monda E., Palmiero G., Lioncino M., Rubino M., Cirillo A., Fusco A. et al. Multimodality imaging in cardiomyopathies with hypertrophic phenotypes. J. Clin. Med. 2022;11(3):868. DOI: 10.3390/jcm11030868.

39. Dorobantu D.M., Wadey C.A., Amir N.H., Stuart A.G., Williams C.A., Pieles G.E. The role of speckle tracking echocardiography in the evaluation of common inherited cardiomyopathies in children and adolescents: A systematic review. Diagnostics (Basel). 2021;11(4):635. DOI: 10.3390/diagnostics11040635.

40. Martsinkevich G.I., Sokolov A.A. Features of echocardiography in children, anthropometric and age-related standarts. Russian Pediatric Journal.2012;(2):17–21. (In Russ.).

41. Khoury P.R., Mitsnefes M., Daniels S.R., Kimball T.R. Age-specific reference intervals for indexed left ventricular mass in children. J. Am. Soc. Echocardiogr. 2009;22(6):709–714. DOI: 10.1016/j.echo.2009.03.003.

42. Orphanou N., Papatheodorou E., Anastasakis A. Dilated cardiomyopathy in the era of precision medicine: Latest concepts and developments. Heart Fail. Rev. 2022;27(4):1173–1191. DOI: 10.1007/s10741-021-10139-0.

43. Ommen S.R., Mital S., Burke M.A., Day S.M., Deswal A., Elliott P. et al. 2020 AHA/ACC Guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: A report of the American Сollege of Cardiology / American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020;142(25):e533–e557. DOI: 10.1161/cir.0000000000000938.

44. Berger S.G., Sjaastad I., Stokke M.K. Right ventricular involvement in hypertrophic cardiomyopathy: evidence and implications from current literature. Scand. Cardiovasc. J. 2021;55(4):195–204. DOI: 10.1080/14017431.2021.1901979.

45. Compton G., Nield L., Dragulescu A., Benson L., Grosse-Wortmann L. Echocardiography as a screening test for myocardial scarring in children with hypertrophic cardiomyopathy. Int. J. Pediatr. 2016;2016:1980636. DOI: 10.1155/2016/1980636.

46. Ezon D.S., Maskatia S.A., Sexson-Tejtel K., Dreyer W.J., Jeewa A., Denfield S.W. Tissue Doppler imaging measures correlate poorly with left ventricular filling pressures in pediatric cardiomyopathy. Congenit. Heart Dis. 2015;10(5):E203–E209. DOI: 10.1111/chd.12267.

47. Tower-Rader A., Mohananey D., To A., Lever H.M., Popovic Z.B., Desai M.Y. Prognostic value of global longitudinal strain in hypertrophic cardiomyopathy: A systematic review of existing literature. JACC Cardiovasc. Imaging. 2019;12(10):1930–1942. DOI: 10.1016/j.jcmg.2018.07.016.

48. Forsey J., Benson L., Rozenblyum E., Friedberg M.K., Mertens L. Early changes in apical rotation in genotype positive children with hypertrophic cardiomyopathy mutations without hypertrophic changes on two-dimensional imaging. J. Am. Soc. Echocardiogr. 2014;27(2):215–221. DOI: 10.1016/j.echo.2013.10.012.

49. Habib G., Bucciarelli-Ducci C., Caforio A.L.P., Cardim N., Charron P., Cosyns B. et al. EACVI Scientific Documents Committee; Indian Academy of Echocardiography. Multimodality imaging in restrictive cardiomyopathies: An EACVI expert consensus document in collaboration with the “Working Group on myocardial and pericardial diseases” of the European Society of Cardiology Endorsed by The Indian Academy of Echocardiography. Eur. Heart J. Cardiovasc. Imaging. 2017;18(10):1090–1121. DOI: 10.1093/ehjci/jex034.

50. Joong A., Hayes D.A., Anderson B.R, Zuckerman W.A., Carroll S.J., Lai W.W. Comparison of echocardiographic diagnostic criteria of left ventricular noncompaction in a pediatric population. Pediatr. Cardiol. 2017;38(7):1493–1504. DOI: 10.1007/s00246-017-1691-9.

51. Bellavia D., Michelena H.I., Martinez M., Pellikka P.A., Bruce C.J., Connolly H.M. et al. Speckle myocardial imaging modalities for early detection of myocardial impairment in isolated left ventricular non-compaction. Heart. 2010;96(6):440–447. DOI: 10.1136/hrt.2009.182170.

52. Becker M.A.J., Cornel J.H., van de Ven P.M., van Rossum A.C., Allaart C.P., Germans T. The prognostic value of late gadolinium-enhanced cardiac magnetic resonance imaging in nonischemic dilated cardiomyopathy: A review and meta-analysis. JACC Cardiovasc. Imaging. 2018;11(9):1274–1284. DOI: 10.1016/j.jcmg.2018.03.006.

53. Freitas P., Ferreira A.M., Arteaga-Fernández E., de Oliveira Antunes M., Mesquita J., Abecasis J. et al. The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J. Cardiovasc. Magn. Reson. 2019;21(1):50. DOI: 10.1186/s12968-019-0561-4.

54. Greulich S., Seitz A., Herter D., Günther F., Probst S., Bekeredjian R. et al. Long-term risk of sudden cardiac death in hypertrophic cardiomyopathy: A cardiac magnetic resonance outcome study. Eur. Heart J. Cardiovasc. Imaging. 2021;22(7):732–741. DOI: 10.1093/ehjci/jeaa423.

55. Petersen S.E., Selvanayagam J.B., Wiesmann F., Robson M.D., Francis J.M., Anderson R.H. et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 2005;46(1):101–105. DOI: 10.1016/j.jacc.2005.03.045.

56. Stacey R.B., Andersen M.M., St Clair M., Hundley W.G., Thohan V. Comparison of systolic and diastolic criteria for isolated LV noncompaction in CMR. JACC Cardiovasc. Imaging. 2013;6(9):931–940. DOI: 10.1016/j.jcmg.2013.01.014.

57. Grothoff M., Pachowsky M., Hoffmann J., Posch M., Klaassen S., Lehmkuhl L. et al. Value of cardiovascular MR in diagnosing left ventricular non-compaction cardiomyopathy and in discriminating between other cardiomyopathies. Eur. Radiol. 2012;22(12):2699–2709. DOI: 10.1007/s00330-012-2554-7.

58. Grigoratos C., Barison A., Ivanov A., Andreini D., Amzulescu M.S., Mazurkiewicz L. et al. Meta-analysis of the prognostic role of late gadolinium enhancement and global systolic impairment in left ventricular noncompaction. JACC Cardiovasc. Imaging. 2019;12(11):2141–2151. DOI: 10.1016/j.jcmg.2018.12.029 .

59. Lee H.J., Im D.J., Youn J.C., Chang S., Suh Y.J., Hong Y.J. et al. Assessment of myocardial delayed enhancement with cardiac computed tomography in cardiomyopathies: A prospective comparison with delayed enhancement cardiac magnetic resonance imaging. Int. J. Cardiovasc. Imaging. 2017;33(4):577–584. DOI: 10.1007/s10554-016-1024-8.

60. Sigvardsen P.E., Fuchs A., Kühl J.T., Afzal S., Køber L., Nordestgaard B.G. et al. Left ventricular trabeculation and major adverse cardiovascular events: The Copenhagen General Population Study. Eur. Heart J. Cardiovasc. Imaging. 2021;22(1):67–74. DOI: 10.1093/ehjci/jeaa110.


Review

For citations:


Plotnikova I.V., Svintsova L.I., Dzhaffarova O.Yu., Kartofeleva E.O., Perevoznikova Yu.E., Pavlyukova E.N. Primary cardiomyopathies in childhood: clinical and diagnostic features (literature review). Siberian Journal of Clinical and Experimental Medicine. 2022;37(3):65-74. (In Russ.) https://doi.org/10.29001/2073-8552-2022-37-3-65-74

Views: 411


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)