Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Artificial neural networks in prediction of atrial fibrillation in men with coronary artery disease

https://doi.org/10.29001/2073-8552-2020-35-4-119-127

Abstract

Aim. The aim of the study was to select, based on mathematical apparatus of artificial neural networks (ANN), the most sen- sitive parameters for creating an ANN model aimed at prediction of atrial fibrillation (AF) in men with coronary artery disease (CАD).

Material and Methods. The study focused on data of men from the register of coronary angiography with angiographically proven coronary artery disease: the main group comprised 180 men with AF; the comparison group comprised 713 men of comparable age without AF. The ANN mathematical model, a multilayer perceptron with one hidden layer, was used to assess the risk of AF. The initial group of patients was divided into three samples: the training, test, and control samples.

Results. Patients with AF were significantly less likely to be employed in budget organizations (55.0% vs 63.7%, p = 0.040) and more often showed higher (III–IV) heart failure NYHA classes (49.2% vs 21.1%, p < 0.001), higher body mass index (BMI) (30.2 [27.4; 33.2] kg/m2 vs 29.0 [26.1; 32.3] kg/m2, p = 0.002), and higher echocardiographic indices of the left ventricular (LV) myocardial mass (163.7 [144.5; 192.4] g/m2 vs 143.9 [126.1; 169.0] g/m2, p < 0.001), left (25.8 [24.1; 29.1] mm/m2 vs 25.6 [23.9; 27.5] mm/m2, p = 0.020) and right ventricular dimensions, and the left atrial diameter (23.6 [21.7; 25.7] mm/m2 vs 21.1 [19.7; 22.7] mm/m2, p < 0.001). The group of AF patients had higher rate of hemodynamically significant mitral regurgitation (48.2% vs 14.1%, p < 0.001). In this group of patients, the index of aortic root dimensions (7.7 [16.4; 19.0] mm/m2 vs 18.3 [17.8; 20.0] mm/m2, р = 0.002) and LV ejection fraction (EF) were lower (49 [42; 56]% vs 56 [47; 60]%, p < 0.001); coronary calcification (23.2% vs 15.7%, p = 0.024 ) and proximal lesions of the right coronary artery (RCA) (28.3% vs 22.7%, p = 0.025) were detected more often. The final model, which included 10 parameters, had the diagnostic accuracy of 85%, sensitivity of 85%, and specificity of 86%.

Conclusion. Atrial fibrillation in men with coronary artery disease can be predicted by ANN model that takes into account the presence of significant mitral regurgitation, extra-budgetary employment, severity of heart failure, coronary calcification, proximal lesion of RCA, BMI, echocardiographic indexes of left heart, aortic root dimensions, and LV EF.

About the Authors

E. I. Yaroslavskaya
Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Elena I. Yaroslavskaya, Dr. Sci. (Med.), Action Director of Laboratory of Instrumental Research Methods 

111, Melnikaite str., Tyumen, 625026



S. M. Dyachkov
Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Sergey M. Dyachkov, Junior Research Scientist, Laboratory of Instrumental Research Methods 

111, Melnikaite str., Tyumen, 625026



E. A. Gorbatenko
Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Elena A. Gorbatenko, Research Assistant, Laboratory of Instrumental Research Methods 

111, Melnikaite str., Tyumen, 625026



References

1. Kirchhof P., Benussi S., Kotecha D., Ahlsson A., Atar D., Casadei B. et al. 2016 ESC Guidelines for the management of atrial fi brillation developed in collaboration with EACTS. Eur. Heart J. 2016;37(38):2893–2962. DOI: 10.1093/eurheartj/ehw210.

2. Schnabel R.B., Yin X., Gona P., Larson M.G., Beiser A.S., McManus D.D. et al. 50 year trends in atrial fi brillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: A cohort study. Lancet. 2015;386(9989):154–162. DOI: 10.1016/S0140-6736(14)61774-8.

3. Yaroslavskaya E.I., Kuznetsov V.A., Bessonov I.S., Gorbatenko E.A., Marinskikh L.V. Association of atrial fi brillation with coronary bed lesions (according to the coronary angiography register). Russian Journal of Cardiology. 2019;(7):12–18 (In Russ.). DOI: 10.15829/1560-4071-2019-7-12-18.

4. Yaroslavskaya E.I., Kuznetsov V.A., Gorbatenko E.A., Marinskikh L.V. Association of atrial fibrillation with coronary lesion in ischemic heart disease patients. Kardiologiia. 2019;59(9)5–12 (In Russ.). DOI: 10.18087/cardio.2019.9.2641.

5. Yaroslavskaya E.I., Kuznetsov V.A., Pushkarev G.S., Krinochkin D.V., Ziryanov I.P., Kolunin G.V. Mitral regurgitation and coronary stenosis in postmyocardial infarction patients. Kardiologiia. 2013;53(2):55–60 (In Russ.).

6. Kuznetsov V.A., Zyryanov I.P., Kolunin G.V., Krinochkin D.V., Semukhin M.V., Panin A.V. et al. Register book of performed coronary angiographies. Certificate No. 2010620075 on state registration of the database, registered on 01.02.2010 (In Russ.).

7. Huang S., Li J., Shearer G.C., Lichtenstein A.H., Zheng X., Wu Y. et al. Longitudinal study of alcohol consumption and HDL concentrations: a community-based study. Am. J. Clin. Nutr. 2017;105(4):905–912. DOI: 10.3945/ajcn.116.144832.

8. Mareev V.Yu., Fomin I.V., Ageev F.T., Begrambekova Yu.L., Vasyuk Yu.A.,Garganeeva A.A. et al. Russian Heart Failure Society, Russian Society of Cardiology. Russian Scientific Medical Society of Internal Medicine Guidelines for Heart failure: chronic (CHF) and acute decompensated (ADHF). Diagnosis, prevention and treatment. Kardiologiia. 2018;58(S6):8–158 (In Russ.). DOI: 10.18087/cardio.2475.

9. Kirchhof P., Benussi S., Kotecha D., Ahlsson A., Atar D., Casadei B. et al. ESC guidelines for the management of atrial fibrillation developedin collaboration with EACTS. Russian Journal of Cardiology. 2017;(7):7–86 (In Russ.). DOI: 10.15829/1560-4071-2017-7-7-86.

10. Karatasakis G., Athanassopoulos G.D. Cardiomyopathies. In book: The EAE textbook of echocardiography; L. Galiuto, L. Badano (ed.). Oxford: Oxford University Press; 2011:477.

11. Lang R., Bierig M., Devereux R., Flachskampf F., Foster E., Pellikka P. et al. Recommendations for chamber quantification. Eur. J. Echocardiography. 2006;7(2):79–108. DOI: 10.1016/j.euje.2005.12.014.

12. Nagueh S.F., Appleton C.P., Gillebert T.C., Marino P.N., Oh J.K., Smiseth O.A. et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography. Eur. J. Echocardiography. 2009;10(2):165–193. DOI: 10.1093/ejechocard/jep007.

13. Haykin S. Neural networks: a comprehensive foundation; second edit. Мoscow: Vil’yams; 2018:1104 (In Russ.).

14. Petretta M., Costanzo P., Acampa W., Imbriaco M., Ferro A., Filardi P.P. et al. Noninvasive assessment of coronary anatomy and myocardial perfusion: going toward an integrated imaging approach: J. Cardiovasc. Med. (Hagerstown). 2008;9(10):977–986. DOI: 10.2459/JCM.0b013e328306f311.

15. Thelin J., Melander O. Dynamic high-sensitivity troponin elevations in atrial fibrillation patients might not be associated with significant coronary artery disease. BMC Cardiovasc. Disord. 2017;17(1):169. DOI: 10.1186/s12872-017-0601-7.

16. Nucifora G., Schuijf J.D., van Werkhoven J.M., Trines S.A., Kajander S., Tops L.F. et al. Relationship between obstructive coronary artery disease and abnormal stress testing in patients with paroxysmal or persistent atrial fibrillation. Int. J. Cardiovasc. Imaging. 2011;27(6):777–785. DOI: 10.1007/s10554-010-9725-x.

17. Bokeria L.A., Makarenko V.N., Yurpol’skaya L.A., Alexandrova S.A., Shlyappo M.A. Visualization of sinus node arteries by multislice spiral computed tomography coronary angiography. Journal of Radiology and Nuclear Medicine. 2014;(1):19–22 (In Russ.). DOI: 10.20862/0042-4676-2014-0-1-19-22.

18. Chen L.Q., Tsiamtsiouris E., Singh H., Rapelje K., Weber J., Dey D. et al. Prevalence of coronary artery calcium in patients with atrial fibrillation with and without cardiovascular risk factors. Am. J. Cardiol. 2020;125(12):1765–1769. DOI: 10.1016/j.amjcard.2020.03.018.


Review

For citations:


Yaroslavskaya E.I., Dyachkov S.M., Gorbatenko E.A. Artificial neural networks in prediction of atrial fibrillation in men with coronary artery disease. Siberian Journal of Clinical and Experimental Medicine. 2020;35(4):119-127. (In Russ.) https://doi.org/10.29001/2073-8552-2020-35-4-119-127

Views: 489


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)