Fuzzy classifiers in cardiovascular disease diagnostics: Review
https://doi.org/10.29001/2073-8552-2020-35-4-22-31
Abstract
About the Author
I. A. HodashinskyRussian Federation
Ilya A. Hodashinsky, Dr. Sci. (Tech.), Professor, Department of Integrated Cybersecurity of Electronic Computer Systems
40, Lenin ave., Tomsk, 634050
References
1. Fernandes M., Vieira S.M., Leite F., Palos C., Finkelstein S., Sousa J.M.C. Clinical Decision Support Systems for Triage in the Emergency Department using Intelligent Systems: a Review. Artif. Intell. Med. 2020;102:101762. DOI: 10.1016/j.artmed.2019.101762.
2. Mustaqeem A., Anwar S.M., Majid M. A modular cluster based collaborative recommender system for cardiac patients. Artif. Intell. Med. 2020;102:101761. DOI: 10.1016/j.artmed.2019.101761.
3. Souza-Pereira L., Pombo N., Ouhbi S., Felizardo V., Garcia N. Clinical decision support systems for chronic diseases: A systematic literature review. Comput. Methods Program Biomed. 2020;195:105565. DOI: 10.1016/j.cmpb.2020.105565.
4. Olakotan O.O., Yusof M.M. Evaluating the alert appropriateness of clinical decision support systems in supporting clinical workfl ow. Journal Biomedical Informatics. 2020;106:103453. DOI: 10.1016/j.jbi.2020.103453.
5. MsRae M.P., Bozkurt B., Ballantyne C.M., Sanchez X., Christodoulides N., Simmons G. et al. Cardiac ScoreCard: A diagnostic multivariate index assay system for predicting a spectrum of cardiovascular disease. Expert Systems with Applications: An International Journal. 2016;54:136–147. DOI: 10.1016/j.eswa.2016.01.029.
6. Thukral S., Rana V. Versatility of fuzzy logic in chronic diseases: A review. Medical Hypotheses. 2019;122:150–156. DOI: 10.1016/j.mehy.2018.11.017.
7. Gadaras I., Mikhailov L. An interpretable fuzzy rule-based classification methodology for medical diagnosis. Artif. Intell. Med. 2009;47(1):25–41. DOI: 10.1016/j.artmed.2009.05.003.
8. Mokeddem S.A. A fuzzy classifi cation model for myocardial infarction risk assessment. Applied Intelligens. 2018;48:1233–1250. DOI: 10.1007/s10489-017-1102-1.
9. Nauck D., Kruse R. Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 1999;16(2):149–169. DOI: 10.1016/s0933-3657(98)00070-0.
10. Kalantari A., Kamsin A., Shamshirband S., Gani A., Alinejad-Rokny H., Chronopoulos A.T. Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions. Neurocomputing. 2018;276:2–22. DOI: 10.1016/j.neucom.2017.01.126.
11. Jemal H., Kechaou Z., Ayed M.B. Enhanced decision support systems in intensive care unit based on intuitionistic fuzzy sets. Advances in Fuzzy Systems. 2017;(5b):1–8. DOI: 10.1155/2017/7371634.
12. Pota M., Esposito M., Pietro G. Designing rule-based fuzzy systems for classification in medicine. Knowl-Based Systems. 2017;124(C):105–132. DOI: 10.1016/j.knosys.2017.03.006.
13. Minutolo A., Esposito M., Pietro G. A fuzzy framework for encoding uncertainty in clinical decision-making. Knowl-Based Systems. 2016;98:95–116. DOI: 10.1016/j.knosys.2016.01.020.
14. Ahmadi H., Gholamzadeh M., Shahmoradi L., Nilashi M., Rashvand P. Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review. Comput. Methods Program Biomed. 2018;161:145–172. DOI: 10.1016/j.cmpb.2018.04.013.
15. Kour H., Manhas J., Sharma V. Usage and implementation of neuro-fuzzy systems for classifi cation and prediction in the diagnosis of diff erent types of medical disorders: a decade review. Artif. Intell. Rev. 2020;53:4651–4706. DOI: 10.1007/s10462-020-09804-x.
16. Sajadi N.A., Borzouei S., Mahjub H., Farhadian M. Diagnosis of hypothyroidism using a fuzzy rule-based expert system. Cliical Epidemiology and Global Health. 2019;7(4):519–524. DOI: 10.1016/j.cegh.2018.11.007.
17. Arji G., Ahmadi H., Nilashi M., Rashid T.A., Ahmed O.H., Aljojo N. et al. Fuzzy logic approach for infectious disease diagnosis: A methodical evaluation, literature and classifi cation. Biocybernetics and Biomedical Engineering. 2019;39(4):937–955. DOI: 10.1016/j.bbe.2019.09.004.
18. Kobrinskii B.A. Fuzzy in clinical medicine and the need to refl ect in expert systems. Information Technologies and Phisician. 2016;5:6–14 (In Russ.).
19. Amato F., Lopez A., Pena-Mendez E.M., Vanhara P., Hampl A., Havel J. Artifi cial neural networks in medical diagnosis. J. Appl. Biomed. 2013;11(2):47–58. DOI: 10.2478/v10136-012-0031-x.
20. Jiang J., Wang H., Xie J., Guo X., Guan Y., Yu Q. Medical knowledge embedding based on recursive neural network for multi-disease diagnosis. Artif. Intell. Med. 2020;103:101772. DOI: 10.1016/j.artmed.2019.101772.
21. Alizadehsani R. Machine learning-based coronary artery disease diagnosis: A comprehensive review. Computers in Biology and Medicine. 2019;111:103346. DOI: 10.1016/j.compbiomed.2019.103346.
22. Acharya U.R., Fujita H., Sudarshan V.K., Oh S.L., Adam M., Tan J.H. et al. Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal. Knowl.-Based Syst. 2017;132(15):156–166. DOI: 10.1016/j.knosys.2017.06.026.
23. Yang H.-H., Wu C.-L. Rough sets to help medical diagnosis – Evidence from a Taiwan’s clinic. Expert System with Applications. 2009;36(5):9293–9298. DOI: 10.1016/j.eswa.2008.12.003.
24. Zhang Z., Shi Y., Gao G. A rough set-based multiple criteria linear programming approach for the medical diagnosis and prognosis. Expert System with Applications. 2009;36(5):8932–8937. DOI: 10.1016/j.eswa.2008.11.007.
25. Wang M., Chen H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Applied Soft Computing. 2020;88:105946. DOI: 10.1016/j.asoc.2019.105946.
26. Chen H.L., Yang B., Wang G., Wang S.-J., Liu J., Liu D.-Y. Support vector machine based diagnostic system for breast Cancer using swarm intelligence. J. Med. Syst. 2012;36(4):2505–2519. DOI: 10.1007/s10916-011-9723-0.
27. Tan K.C., Yu Q., Heng C.M., Lee T.H. Evolutionary computing for knowledge discovery in medical diagnosis. Artif. Intell. Med. 2003;27(2):129–154. DOI: 10.1016/S0933-3657(03)00002-2.
28. Park Y.-J., Chun S.-H., Kim B.-C. Cost-sensitive case-based reasoning using a genetic algorithm: Application to medical diagnosis. Artif. Intell. Med. 2011;51(2):133–145. DOI: 10.1016/j.artmed.2010.12.001.
29. Exarchos T.P., Tsipouras M.G., Exarchos C.P., Papaloukas C., Fotiadis D.I., Michalis L.K. A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree. Artif. Intell. Med. 2007;40(3):187–200. DOI: 10.1016/j.artmed.2007.04.001.
30. Mastoi Q., Wah T.Y., Raj R.G., Iqbal U. Automated diagnosis of coronary artery disease: A review and workfl ow. Cardiol. Res. Pract. 2018;2016282. DOI: 10.1155/2018/2016282.
31. Kora P., Meenakshi K., Swaraja K., Rajani A., Islam K.M. Detection of cardiac arrhythmia using fuzzy logic. Inform. Med. Unlocked. 2019;17:100257. DOI: 10.1016/j.imu.2019.100257.
32. Lahsasna A., Ainon R.N., Zainuddin R., Bulgiba A. Design of a fuzzybased decision support system for coronary heart disease diagnosis. J. Med. Syst. 2012;36(5):3293–3306. DOI: 10.1007/s10916-012-9821-7.
33. Melin P., Miramontes I., Prado-Arechiga G. A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis. Expert System with Applications. 2018;107:146–164. DOI: 10.1016/j.eswa.2018.04.023.
34. Anooj P.K. Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules. Journal of King Saud University – Computer and Information Sciences. 2012;24(1):27–40. DOI: 10.1016/j.jksuci.2011.09.002.
35. Gorbunov I.V., Hodashinsky I.A. Methods of buildings Pareto-optimal fuzzy classifi ers. Artifi cial Intelligence and Decision Making. 2015;2:75–87 (In Russ.).
36. Yankovskaya A.E., Gorbunov I.V., Hodashinsky I.A. Tradeoff search methods between interpretability and accuracy of the identifi cation fuzzy systems based on rules. Pattern Recognition and Image Analysis. 2017;27(2):243–265. DOI: 10.1134/S1054661817020134.
37. Zadeh L. Fuzzy sets. Information and Control. 1965;8(3):338–353. DOI: 10.1016/S0019-9958(65)90241-X.
38. Zadeh L. Knowledge representation in fuzzy logic. IEEE Transaction and Knowledge and Data Engeneering. 1989;1(1):89–100. DOI: 10.1109/69.43406.
39. Mekh M.A., Hodashinsky I.A. Comparative analysis of the application of diff erential evolution methods to optimize the parameters of fuzzy classifiers. Journal of Computer and Systems Sciences International. 2017;56(4):616–626.
40. Hodashinsky I.A., Gorbunov I.V. Optimization of fuzzy system parameters using the modified bee colonyies algorithm. Mehatronika, Avtomatizacija, Upravlenie. 2012;(10):15–20 (In Russ.).
41. Hodashinsky I.A., Sarin K.S. Feature selection: Comparative analysis of binary metaheuristics and population based algorithm with adaptive memory. Programming and Computer Software. 2019;45(5):221–227. DOI: 10.1134/S0361768819050037.
42. Hodashinsky I.A. Simulated annealing and methods based on derivatives for fuzzy systems identification. Information Technologies. 2012;(3):14–20 (In Russ.).
43. Marateb H.R., Goudarzi S. A noninvasive method for coronary artery diseases diagnosis using a clinically-interpretable fuzzy rule-based system. J. Res. Med. Sci. 2015;20(3):214–223.
44. Pal D., Mandana K.M., Pal S., Sarkar D., Chakraborty C. Fuzzy expert system approach for coronary artery disease screening using clinical parameters. Knowl.-Based Syst. 2012;36:162–174. DOI: 10.1016/j.knosys.2012.06.013.
45. Mohammadpour R.A., Abedi S.M., Bagheri S., Ghaemian A. Fuzzy rule-based classification system for assessing coronary artery disease. Comput. Math. Methods Med. 2015;2015:564867. DOI: 10.1155/2015/564867.
46. Marateb H.R., Mansourian M., Faghihimani E., Amini M., Farina D. A hybrid intelligent system for diagnosing microalbuminuria in type 2 diabetes patients without having to measure urinary albumin. Comput. Biol. Med. 2014;45:34–42. DOI: 10.1016/j.compbiomed.2013.11.006.
47. European ST-T database directory. URL: https://physionet.org/content/edb/1.0.0/.
48. MIT-BIH arrhythmia database. URL: https://physionet.org/content/mitdb/1.0.0/.
49. Wang A., An N., Chen G., Li L., Alterovitz G. Predicting hypertension without measurement: A non-invasive, questionnaire-based approach. Expert System with Applications. 2015;42(21):7601–7609. DOI: 10.1016/j.eswa.2015.06.012.
50. Das S., Ghosh P.K., Kar S. Hypertension diagnosis: A comparative study using fuzzy expert system and neuro fuzzy system. In: IEEE International Conference on Fuzzy Systems. Hyderabad: IEEE; 2013. DOI: 10.1109/FUZZ-IEEE.2013.6622434.
51. Su T.-J., Wang S.-M., Vu H.-Q., Jou J.-J., Sun C.-K. Mean arterial pressure control system using model predicative control and particle swarm optimization. Microsystem Technologies. 2018;24:147–153. DOI: 10.1007/s00542-016-3212-9.
52. Sharma R., Deepak K.K., Gaur P., Joshi D. An optimal interval type-2 fuzzy logic control based closed-loop drug administration to regulate the mean arterial blood pressure. Computer Methods and Programs Biomedicine. 2020;185:105167. DOI: 10.1016/j.cmpb.2019.105167.
53. Ramirez E., Melin P., Prado-Arechiga G. Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification. Expert System with Applications. 2019;126:295–307. DOI: 10.1016/j.eswa.2019.02.035.
54. Wolpert D., Macready W. No free lunch theorems for optimization. IEEE Transaction Evolutionary Computation. 1997;1(1):67–82. DOI: 10.1109/4235.585893.
Review
For citations:
Hodashinsky I.A. Fuzzy classifiers in cardiovascular disease diagnostics: Review. Siberian Journal of Clinical and Experimental Medicine. 2020;35(4):22-31. (In Russ.) https://doi.org/10.29001/2073-8552-2020-35-4-22-31