Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Pathomorphology of a new coronavirus infection COVID-19

https://doi.org/10.29001/2073-8552-2020-35-3-47-52

Abstract

On March 11, 2020, the World Health Organization declared COVID-19 apandemic. Despite a large number of scientific publications concerning the clinical picture and trea tment methods, data on structural changes of internal organs in COVID-19 is still insufficient. This review presents and analyzes several clinical cases published by research groups in various countries. COVID-19 infection is caused by a SARS-CoV-2 virus that binds to the angiotensin-converting enzyme 2 ACE2 receptor. Interaction with this receptor is the initial stage of pathogenesis. The morphological picture is similar to pneumonia caused by SARS-CoV and MERS-CoV: at the initial stage, a picture of shock lungs develops, later it ends in fibrosis and organizing pneumonia. One of the most severe complications is acute respiratory distress syndrome, which is observed in some clinical cases reviewed. In this article, we collected cases of clinical and morphological studies of patients with COVID-19, published in international peer-reviewed medical literature to date.

About the Authors

O. A. Lobanova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Olga A. Lobanova, 4th year student, Faculty of Medicine

p. 2, 8, Trubetskaya str., Moscow, 119991, Russian Federation



D. S. Trusova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Daria S. Trusova, 4th year student, Faculty of Medicine

p. 2, 8, Trubetskaya str., Moscow, 119991, Russian Federation



E. E. Rudenko
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Ekaterina E. Rudenko, Assistant Professor, Pathologist, Department of Pathological Anatomy named after Academician A.I. Strukov

p. 2, 8, Trubetskaya str., Moscow, 119991, Russian Federation



D. D. Protsenko
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Dmitry D. Protsenko, Cand. Sci. (Med.), Assistant Professor, Department of Pathological Anatomy named after Academician A.I. Strukov

p. 2, 8, Trubetskaya str., Moscow, 119991, Russian Federation



E. A. Kogan
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Eugenia A. Kogan, Dr. Sci. (Med.), Pathologist, Professor, Department of Pathological Anatomy named after Academician A.I. Strukov

p. 2, 8, Trubetskaya str., Moscow, 119991, Russian Federation



References

1. Jin Y., Yang H., Ji W., Wu W., Chen S., Zhang W. et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372. DOI: 10.3390/v12040372

2. Mousavizadeh L., Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Infect. 2020;1684– 1182(20):30082–30087. DOI: 10.1016/j.jmii.2020.03.022.

3. Kovalev A.V., Frank G.A., Minaeva P.V., Tuchik E.S. Study of deceased persons with suspected coronavirus infection (COVID-19): Temporary methodical guidelines. Мoscow; 2020:85 (In Russ.). http://www.rc-sme.ru/files/Finish_MR_COVID-19_RCSME_08_04_2020.pdf (24.05.2020).

4. Jin Y., Yang H., Ji W., Wu W., Chen S., Zhang W. et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372. DOI: 10.3390/v12040372

5. Pal R., Bhansali A. COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Res. Clin. Pract. 2020;162:108132. DOI: 10.1016/j.diabres.2020.108132.

6. Kovalev A.V., Frank G.A., Minaeva P.V., Tuchik E.S. Study of deceased persons with suspected coronavirus infection (COVID-19): Temporary methodical guidelines. Мoscow; 2020:85 (In Russ.). http://www.rc-sme.ru/files/Finish_MR_COVID-19_RCSME_08_04_2020.pdf (24.05.2020).

7. Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448. DOI: 10.1126/science.abb2762.

8. Pal R., Bhansali A. COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Res. Clin. Pract. 2020;162:108132. DOI: 10.1016/j.diabres.2020.108132.

9. Zhao Y., Zhao Z., Wang Y., Zhou Y., Ma Y., Zuo W. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. BioRxiv. 2020. DOI: 10.1101/2020.01.26.919985.

10. Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448. DOI: 10.1126/science.abb2762.

11. Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections. The Journal of Pathology. 2015;235(2):185–195. DOI: 10.1002/path.4454.

12. Zhao Y., Zhao Z., Wang Y., Zhou Y., Ma Y., Zuo W. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. BioRxiv. 2020. DOI: 10.1101/2020.01.26.919985.

13. Mason R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur.Respir. J. 2020;55(4):2000607. DOI: 10.1183/13993003.00607-2020.

14. Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections. The Journal of Pathology. 2015;235(2):185–195. DOI: 10.1002/path.4454.

15. Jeffers S.A., Tusell S.M., Gillim-Ross L., Hemmila E.M., Achenbach J.E., Babcock G.J. et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proceedings of the National Academy of Sciences. 2004;101(44):15748–15753. DOI: 10.1073/pnas.0403812101.

16. Mason R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur.Respir. J. 2020;55(4):2000607. DOI: 10.1183/13993003.00607-2020.

17. Chen Z., Mi L., Xu J., Yu J., Wang X., Jiang J. et al. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J. Infect. Dis. 2005;191(5):755–760. DOI: 10.1086/427811.

18. Jeffers S.A., Tusell S.M., Gillim-Ross L., Hemmila E.M., Achenbach J.E., Babcock G.J. et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proceedings of the National Academy of Sciences. 2004;101(44):15748–15753. DOI: 10.1073/pnas.0403812101.

19. Wang K., Chen W., Zhou Y.-S., Lian J.-Q., Zhang Z., Du P. et al. SARSCoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020. DOI: 10.1101/2020.03.14.988345.

20. Chen Z., Mi L., Xu J., Yu J., Wang X., Jiang J. et al. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J. Infect. Dis. 2005;191(5):755–760. DOI: 10.1086/427811.

21. Kato N., Kosugi T., Sato W., Ishimoto T., Kojima H., Sato Y. et al. Basigin/ CD147 promotes renal fibrosis after unilateral ureteral obstruction. The Am. J. Pathol. 2011;178(2):572–579. DOI: 10.1016/j.ajpath.2010.10.009.

22. Wang K., Chen W., Zhou Y.-S., Lian J.-Q., Zhang Z., Du P. et al. SARSCoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020. DOI: 10.1101/2020.03.14.988345.

23. Muramatsu T. Basigin(CD147), a multifunctional transmembrane glycoprotein with various binding partners. J. Biochem. 2015;159(5):481–490. DOI: 10.1093/jb/mvv127.

24. Kato N., Kosugi T., Sato W., Ishimoto T., Kojima H., Sato Y. et al. Basigin/ CD147 promotes renal fibrosis after unilateral ureteral obstruction. The Am. J. Pathol. 2011;178(2):572–579. DOI: 10.1016/j.ajpath.2010.10.009.

25. Lu M., Wu J., Hao Z.-W., Shang Y.-K., Xu J., Nan G. et al. Basolateral CD147 induces hepatocyte polarity loss by E-cadherin ubiquitination and degradation in hepatocellular carcinoma progress. Hepatology. 2018;68(1):317–332. DOI: 10.1002/hep.29798.

26. Muramatsu T. Basigin(CD147), a multifunctional transmembrane glycoprotein with various binding partners. J. Biochem. 2015;159(5):481–490. DOI: 10.1093/jb/mvv127.

27. Zhang M.-Y., Zhang Y., Wu X.-D., Zhang K., Lin P., Bian H.-J. et al. Disrupting CD147-RAP2 interaction abrogates erythrocyte invasion by Plasmodium falciparum. Blood. 2018;131(10):1111–1121. DOI: 10.1182/blood-2017-08-802918.

28. Lu M., Wu J., Hao Z.-W., Shang Y.-K., Xu J., Nan G. et al. Basolateral CD147 induces hepatocyte polarity loss by E-cadherin ubiquitination and degradation in hepatocellular carcinoma progress. Hepatology. 2018;68(1):317–332. DOI: 10.1002/hep.29798.

29. Pushkarsky T., Zybarth G., Dubrovsky L., Yurchenko V., Tang H., Guo H. et al. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proceedings of the National Academy of Sciences. 2001;98(11):6360–6365. DOI: 10.1073/pnas.111583198.

30. Zhang M.-Y., Zhang Y., Wu X.-D., Zhang K., Lin P., Bian H.-J. et al. Disrupting CD147-RAP2 interaction abrogates erythrocyte invasion by Plasmodium falciparum. Blood. 2018;131(10):1111–1121. DOI: 10.1182/blood-2017-08-802918.

31. Yurchenko V., Constant S., Eisenmesser E., Bukrinsky M. Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics. Clinical &Experimental Immunology. 2010;160(3):305–317. DOI: 10.1111/j.1365-2249.2010.04115.x.

32. Pushkarsky T., Zybarth G., Dubrovsky L., Yurchenko V., Tang H., Guo H. et al. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proceedings of the National Academy of Sciences. 2001;98(11):6360–6365. DOI: 10.1073/pnas.111583198.

33. Muramatsu T. Basigin: A multifunctional membrane protein with an emerging role in infections by malaria parasites. Expert Opin. Ther. Targets. 2012;16(10):999–1011. DOI: 10.1517/14728222.2012.711818.

34. Yurchenko V., Constant S., Eisenmesser E., Bukrinsky M. Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics. Clinical &Experimental Immunology. 2010;160(3):305–317. DOI: 10.1111/j.1365-2249.2010.04115.x.

35. Ulrich H., Pillat M.M. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev. Rep. 2020;16(3):434–440. DOI: 10.1007/s12015-02009976-7.

36. Muramatsu T. Basigin: A multifunctional membrane protein with an emerging role in infections by malaria parasites. Expert Opin. Ther. Targets. 2012;16(10):999–1011. DOI: 10.1517/14728222.2012.711818.

37. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420–422. DOI: 10.1016/S22132600(20)30076-X.

38. Ulrich H., Pillat M.M. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev. Rep. 2020;16(3):434–440. DOI: 10.1007/s12015-02009976-7.

39. Yao X.H., Li T.Y., He Z.C., Ping Y.F., Liu H.W., Yu S.C. et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Chinese Journal of Pathology. 2020;49(5):411–417. DOI: 10.3760/ cma.j.cn112151-20200312-00193.

40. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420–422. DOI: 10.1016/S22132600(20)30076-X.

41. Barton L.M., Duval E.J., Stroberg E., Ghosh S., Mukhopadhyay S. COVID-19 autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 2020;153(6)725–733. DOI: 10.1093/AJCP/AQAA062.

42. Yao X.H., Li T.Y., He Z.C., Ping Y.F., Liu H.W., Yu S.C. et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Chinese Journal of Pathology. 2020;49(5):411–417. DOI: 10.3760/ cma.j.cn112151-20200312-00193.

43. Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S.-Y. Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 2020;15(5):700–704. DOI: 10.1016/j.jtho.2020.02.010.

44. Barton L.M., Duval E.J., Stroberg E., Ghosh S., Mukhopadhyay S. COVID-19 autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 2020;153(6)725–733. DOI: 10.1093/AJCP/AQAA062.

45. Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S.-Y. Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 2020;15(5):700–704. DOI: 10.1016/j.jtho.2020.02.010.


Review

For citations:


Lobanova O.A., Trusova D.S., Rudenko E.E., Protsenko D.D., Kogan E.A. Pathomorphology of a new coronavirus infection COVID-19. Siberian Journal of Clinical and Experimental Medicine. 2020;35(3):47-52. (In Russ.) https://doi.org/10.29001/2073-8552-2020-35-3-47-52

Views: 23314


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)